
PARALLEL ALGORITHMS FOR

ZERO-ONE SUPPLY-DEMAND PROBLEMS

* Noam Nisan ** Danny Soroker

Computer Science Division

University of California

Berkeley, CA 94720

ABSTRACT

A technique which yields fast parallel algorithms for several zero-one supply

demand problems is presented. We give NC algorithms for the following

related problems:

(1) Given a sequence of supplies a 11 .•. ,an and demands b1, ... ,bm, con

struct a zero-one flow pattern satisfyiag these constraints, where every supply

vertex can send at most one unit of flow to each demand vertex.

(2) Given a sequence of positive and negative integers summing to zero,

representing supplies and demands respectively, construct a zero-one flow pat

tern so that the net flow out of (into) each vertex is its supply tdemand), where

every vertex can send at most one unit of flow to every other vertex.

(3) Construct a digraph without self-loops with specified in- and out-degrees.

We extend our results to the case where the input represents upper

bounds on supplies and lower bounds on demands.

1. Introduction

Supply-demand problems are fundamental in combinatorial optimization

([FF],[La]). In one formulation of the problem the input is a network in which each

arc has a non-negative capacity, and each vertex has a certain supply or demand

(possibly zero). The task is to find a flow function, such that the flow through each

arc is no more than its capacity and the difference between the flow into a vertex

and out of it is equal to its supply (or demand). This problem is equivalent to the

general max flow problem, and can, therefore, be solved efficiently sequentially

([La],[PS],[GT]), but probably has no efficient parallel solution, since it is P-

* Research supported by NSF. grant DCR-8411954 and a grant from Digital Equip-

ment Corporation. .
** Research supported by Defense Advanced Research Pr~jects Agency tDoDl Arpa

Order No. 4871, Monitored by Space & Naval Warfare Systems Command under

Contract No. N00039-84-C-0089 and by the International Computer Science Insti

tute, Berkeley, California.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1987 2. REPORT TYPE

3. DATES COVERED
 00-00-1987 to 00-00-1987

4. TITLE AND SUBTITLE
Parallel Algorithms for Zero-One Supply-Demand Problems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A technique which yields fast parallel algorithms for several zero-one supply-demand problems is
presented. We give NC algorithms for the following related problems: (1) Given a sequence of supplies a1,
..., an and demands b1, ..., bm, construct a zero-one flow pattern satisfying these constraints, where every
supply vertex can send at most one unit of flow to each demand vertex. (2) Given a sequence of positive and
negative integers summing to zero, representing supplies and demands respectively, construct a zero-one
flow pattern so that the net flow out of (into) each vertex is its supply (demand), where every vertex can
send at most one unit of flow to every other vertex. (3) Construct a digraph without self-loops with
specified in- and out-degrees. We extend our results to the case where the input represents upper bounds
on supplies and lower bounds on demands.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

- 2 -

complete ([GSS]). There are, however, many interesting special cases of this prob

lem whose solutions do not require the full power of general max flow.

In this paper we are concerned with several such problems. The first problem

we discuss is: given a sequence of supplies, a v ... ,a,17 and demands,

b 17 ..• , bm, construct a zero-one flow pattern satisfying these constraints, where

every supply vertex can send at most one unit of flow to each demand vertex.

Equivalently, we can state this problem as that of constructing a zero-one matrix,

M, having ai 1 's in the i 'th row and bj 1 's in the j'th column (for all

1 sis n , 1 Sj s m). We will refer to this problem as the

matrix construction problem. M is called a realization for the input Ca,b). There is

a simple sequential algorithm for constructing a realization if one exists ([FF],[G]):

select any row, assign its 1's to the columns having largest column sums and

repeat this procedure in the reduced problem. If this procedure gets stuck (i.e.

some column sum becomes negative), then no realization exists.

This algorithm, although easy to implement sequentially, seems very hard to

parallelize. Thus it is natural to ask if there is a fast parallel algorithm for this

problem. Two remarks are relevant to this question: first, the problem can be

solved by network flow techniques. Since the capacities are small (polynomial in

the size of the flow network), there are Random NC algorithms for the problem by

reduction to maximum matching ([KUW2],[MVV]). Second, there is a simple

sequential method for testing whether an instance, (a,b) is realizable ([FF],[B]). It

is based on partial sums of the sequences, and can be implemented in NC in a

straightforward manner. However, this method does not yield a way of construct

ing a realization. This is another example of the apparent gap between search and

decision problems in the parallel realm ([KUW1]).

We present a deterministic NC algorithm for the matrix construction problem.

Our algorithm can be implemented to run in time 0(log4 IMI> using O(!MI·(n + m))

processors on a CRCW PRAM, or in time 0(log3IMI> using O<IMI·(n+mJ3J proces

sors on an EREW PRAM, where M is the realization matrix with n rows and m

columns and IMI is the size of M (i.e. n·m). When n =8(m) the number of proces

sors is O<IMIL5). and 0(IMI 2·
5) respectively.

The algorithm is based on a careful examination of the network flow formula

tion of the problem. It exploits the fact that there are only a polynomial number of

cuts which need to be considered, and that this set of potentially min cuts has a

natural ordering associated with it.

The methodology we develop enables us to solve the following two related

problems (with the same time and processor bounds):

(1) The symmetric supply -demand problem - given a sequence of positive and

negative integers summing to zero, representing supplies and demands respec

tively, construct a zero-one flow pattern so that the net flow out of (into) each

- 3 -

vertex is its supply (demand), where every vertex can send at most one unit of flow

to every other vertex. Notice that this problem is quite different than the matrix

construction problem, since it does not have a "bipartite" nature.

(2) The digraph construction problem - construct a simple directed graph with

specified in- and out-degrees. This corresponds to constructing a zero-one matrix

with specified row and column sums, where the diagonal entries are forced to be

zero. [FF] and [B] give a simple sequential algorithm when the in- and out

degrees are sorted in the same order (i.e. a vertex with higher in-degree has higher

out-degree). Our algorithm is the only one we know of for general orders that does

not use max flow.

We extend our results to the case where the input represents upper bounds on

supplies and lower bounds on demands.

An outline of the paper follows:

In section 2 we explain in detail our methodology. We then state the matrix

construction algorithm formally and finally discuss its parallel complexity (time

and processor bounds).

In section 3 we describe how our techniques can be used to yield a solution to

the symmetric supply-demand problem.

Section 4 contains a description of the algorithm for the digraph construction

problem.

Finally, in section 5 we describe our method for solving the supply-demand

problems when we are given upper bounds on supplies and lower bounds on

demands.

A few words about parallel algorithms. Our algorithms use, in various places,

partial sum computations. The basic problem in this category is - given a sequence

x 1, ... ,Xn, compute all sums of the form ±xi. This problem is widely mentioned
i = 1

in the literature (e.g. [F],[MR]) and we will not discuss it in this paper, other than

mentioning. that it can be solved efficiently in parallel. Several other tools that we

use implicitly are finding connected components ([SV]) and various algorithms on

trees ([TV]).

2. The Matrix Construction Problem

2.1. The Slack Matrix

Our parallel algorithm is based on a careful analysis of the network flow for

mulation of the problem. The main tool we use is, what we call, the slack matrix

which is similar to the "structure matrix" of Ryser [R]. In order to define the slack

- 4-

matrix, we need to look at the solution to our problem by network flow. Given the

input (a,b): a 1 ~ a 2 ~ ···~an, b 1 ~ b 2 ~ • · · ~ bm, we construct a flow network,

N, as shown in fig. 2.1: the vertex set consists of a source, s, a sink, t, vertices

ui , 1 sis n corresponding to rows and vertices uj , 1 Sj s m corresponding to

columns. The arc set contains three types of arcs: for all 1 sis n, 1 Sj s m there

are arcs (s,ui) of capacity ai, (u1,t) of capacity bj and (ui,uj) of capacity 1.

Fig. 2.1 : Flow network for solving the 0-1 matrix construction problem

Let S = 2:ai = :2: bi. Clearly the max flow value in N is bounded by S. Furth-

i=l J=l

ermore, a flow which satisfies all rows and columns sums is of value S. It follows

(by the max flow - min cut theorem) that the problem instance (a,b) is realizable if

and only if every directed cut in N has capacity at least S.

Let C = (C 6 :C1
) be a directed cut in N (i.e. the vertices are partitioned into

two sets, cs, C1 s.t. sEC', t E C 1
). Say cs contains x vertices from the set

{u 11 ... , u11 } and m-y vertices from {u 1, ... , um}. Observe that if we replace uj by

ui in cs, for some i <j, then the capacity of the cut can only decrease. Similarly,

replacing VI£ by u1 in cs can only decrease the capacity of the cut, for l > k. It fol

lows that the capacity of C is no less than the capacity of the cut C:r.y• where

c:,y = {sJU{ul, ... ,uJU{uy+b"''umJ. Thus there are only n·m cuts,

{C:r,y I 1 sx s n , 1 sy s m}, which are potential min cuts. The cut C:r.y is shown in

fig. 2.2. Therefore, necessary and sufficient conditions for the instance (a,b) to be

realizable are that for every 1 s x s n 1 s y s m:

capacity(C:r) = ~ ai + :2: b1 + x·y ~ S
r=r+l j=y+l

2: ai + (S- fb) + x·y ~ S
i=:r+l J=l

- 5 -

2: ai - ~ bj + x·y ~ 0
i=.x+l j=l

Definition: The slack of Cx,y of problem instance (a,b) is:

sla,£/x,y) = ~ ai - ~ b; + x·y
i=.x+l j=l

The slack matrix, SL-b~, is the matrix whose ij'th entry is sl-bc{ij).
a, a,

Proposition 2.1: The instance (a,b) is realizable if and only if SLii,b is non

negative.

Proposition 2.2: Let (a,b) be an instance which is realizable by some matrix, M,

and assume that sla,£/x ,y) = 0. Then:

(1) M[ij] = 1 for all lSiSx, lSjSy

(2) M[ij] =0 for all x+lSiSn ,y+lSjSm

Proof: Since sla,"£/x ,y) = 0, the cut Cx,y has capacity S, which means that in any

max flow forward arcs (1) are all saturated, and backward arcs (2) all have zero

flow. This situation is shown in fig. 2.2. 0

Fig. 2.2: A tight cut - sl-bctx,y)=O
a,

All forward arcs are saturated; All backward arcs have flow 0

If sla:,r;<x,y) = 0, We will call Cx,y a tight cut. Proposition 2.2 shows that existence

of a tight cut simplifies the solution considerably. In fact it gives rise to a divide

and conquer approach: if C, Y is tight, constructing a matrix M[l:n ,l:m] for the ori

ginal problem is reduced to con~tructing the two sub-matrices, M[x + l:n,l:y] and

M[l:x ,y + l:m]. Of course, we are not always lucky enough to have a tight cut.

- 6 -

Our approach is to perturb the input so as to improve our luck! Here is a high

level description of our algorithm:

(1) Perturb the inputs, Ca, b). Call this new instance ("a, lh

(2) Recursively solve the instance (a, lh Call the solution M'.

(3) Correct the matrix M' to obtain a matrix, M, which solves the original

instance, (a, b'J.

How do we perturb an instance? A basic perturbation can be viewed as shifting one

unit from the poor to the rich in order to make the situation tighter: subtract 1

from ak and add 1 to a1 for some k >l. We do not allow that a perturbation will

change the crdering of the a/s, so it is necessary that ak >all + 1 and a 1 <a1_ 1 before

the perturbation.

Remark: We will be discussing only perturbations of the row sums (the a/s). All

this discussion holds for perturbation of the column sums as well.

Proposition 2.3: Let (a,b) be a problem instance, and let (a,7J) be obtained by

shifting one unit from ak to a1 for some k > l. Then sla:,]I<x ,y) = slo: jj{x ,y) -1 if

lSx<k, and sla:,]I(x,y) = slo:,jj{x,y) otherwise.

Proof: This can be seen by looking at the formula for sl. []

This proposition shows that a basic perturbation reduces the slack of a certain

set of cuts, and leaves the rest unchanged. This observation is the basis for our

algorithm.

2.2. One Phase of Perturbations

Achieving poly-log recursion depth for the basic algorithm described in the

previous section is a non-trivial matter. The reason is that it is hard to control

which cut or cuts will become tight. Furthermore, since we have limited ourselves

to perturbations that do not change the ordering of the a/s, it is not clear that a

tight cut can always be obtained.

Say we are shifting units from ak to a 1 (for some k >l). How many units can

we shift? Viewing the unit shifting as a sequential process (i.e. shifting one unit at

each time step), we can shift until one of three things happens:

(1) az becomes equal to al-l·

(2) ak becomes equal to ak + 1 .

(3) slz;:,f}x ,y) becomes zero, for some l s x < k.

In case (3) progress is made, since a tight cut is created, and we can split the

problem into two smaller problems. What about the first two cases? We observe

that we have possibly reduced the number of different ai values. This observation

- 7 -

is the key to our approach for performing perturbations.

Definition: The complexity of an instance (a,b) comp(a,b) is the product of the

number of different ai values and the number of different bj values.

Our parallel algorithm works in phases. The input to a perturbation phase is

an instance of certain complexity, say K, and the output is one or more instances,

each having complexity bounded by c·K, for some constant c<l. Finally, if the

complexity of the input is less than a certain constant, B, we construct a realiza

tion for it (this is the base case). We proceed to describe one perturbation phase. In

this discussion we will derive the constants c and B. For better exposition we will

first describe a phase as a sequential process. The parallel implementation will be

explained later.

In each phase either row sums or column sums are perturbed. The sequence

that is perturbed (row or column sums) is that which has a larger number of

different values. We will discuss a phase in which row sums are perturbed.

Phases in which column sums are perturbed are essentially identical.

A phase starts by selecting a consecutive set of actiue rows, {h, h + 1, ... ,1} . The

parameters h and l depend on the input, (a,b) and its complexity, K, and will be

derived later. Let L=a1+ 1 and H=ah-l· The perturbation is performed as fol

lows: repeatedly shift units from the lowest active row, (initially row l), to the

highest active row, (initially row h). A row becomes inactive, and stops sending or

receiving units, when its row sum either drops to L or reaches H. The phase ter

minates when one of two things happens:

(1) At most one active row is left.

(2) sla,~x ,y) becomes zero, for some h ~ x < l.

In case (1) no tight cuts have been obtained, but the row sums of all the active

rows (except, possibly, one) have become either L or H. Therefore the number of

different row values decreases.

In case (2) one or more tight cuts are created, and the instance can be split, using

proposition 2.2, into two smaller instances ("smaller", in this case, means less rows

and lower complexity).

Let a,/3 and "'(be the number of different values in the sets {a 1, ... ,ah-d,

{ah, . .. ,az} and {a1+ 1, ... ,an} respectively. We want to select these parameters so

as to minimize the complexity of the outputs of the phase:

Case (1) : The number of different row sums remaining is bounded by a+ y + 1

(since the f3 values corresponding to active rows disappeared, except for at most

oneJ.

Case (2) : Zero slack is obtained for one or more rows in the range [h ,l -1]. A sim

ple calculation shows that the number of different row sums in the resulting

instances is bounded either by a+ f3 + 1 or by f3 + y + 1.

- 8 -

Thus we need to minimize the maximum of a+ fJ + 1 , a+ y + 1 and fJ + y + 1

subject to a+fJ+y=K (where K = comp(a,b)). The solution is, of course, to have

a,fJ and y as equal as possible, i.e. all roughly K/3. From this calculation one can

see that the complexity can be reduced by these perturbations as long as the

number of different row values is more than 5.

To summarize, if the input to a phase has complexity K, the outputs have

complexity bounded by f 2~l+1. Thus the total number of phases is O(log(n·m)).

The base case is any instance with at most 5 different row values and 5 different

column values.

We next discuss the parallel implementation of one perturbation phase. The

first step is to calculate the new row sums and slack matrix under the assumption

that none of the cuts become tight. If this new slack matrix is strictly positive

then, indeed, we are in case (1).

Let p be the initial number of active rows (p = l- h + 1). After the phase

(assuming case (1)), there will be q rows of value H, p- q + 1 rows of value L and

one row of value I, where H >I~ L. q and I are easy to calculate:

±<ai-L)

q = l i=~ -L J

I = ±<ai-L) mod (H -L)
i=h

Let mi = min {sl-al,i ,y) I 1 sy s m}, and let mi' be the new minimum slack in

row i after the phase is completed (assuming case (1)). Then:

For hsi<h+q

For h +q Si <l m I
,

- ~(H-ai)
j=h

± (ai-L)
j =i+l

If all the mi' are positive, then we are provably in case (1). If not, we need to

detect at what "time step" (during the "sequential process") the first tight cut was

created. This turns out to be a simple task for the following reason: if we plot the

value of any entry in the slack matrix as a function of time, it decreases by one

unit each step until some point in time, and remains constant from that point on.

Thus the rows where the first zero slack occurs are the rows for which m is

minimum among the rows that have m' so. The total number of units shifted in

the phase is this minimum m value. It is easy to compute the new row sums given

the number of units shifted.

- 9 -

In both cases ((1) and (2)) we need to calculate the number o(units shifted

from row j to row i, for every h s i <j s l. (These numbers will be used later, in

the correction phase.) This calculation can be performed by a simple partial-sums

computation.

2.3. Correcting a Perturbed Solution

After a realization is obtained for the perturbed instance we need to correct it

in order to obtain a realization for the original instance. Clearly the required task

is to shift units back to their original rows. The rows which participate in the

shifting of units are divided into two sets - the donors and the receivers, where

donors shift units to the receivers during the perturbation phase, and get them

back at the correction phase. Note that no row is both a donor and a receiver in

any given phase. Let ilijJ be the the number of units shifted from the donor j to

the receiver i in the perturbation phase.

Definition: Let M be a realization matrix. Sliding a unit from row i to row j

means changing M[i,k] from 1 to 0 and M[j,k] from 0 to 1, for some column, k.

Lemma 2.1: Given any realization of the perturbed instance, M', it is always pos

sible to correct it by sliding s(j,i) units from receiver, i, to donor, j, for all

receivers and donors.

Proof: Again it is convenient to view the process of sliding units as a sequential

one. Assume that some of the units have been slid, but less than s(j,i) units have

been slid from row i to row j. Call the current matrix M 1. We will show that it is

possible to slide a unit from row i to row j in M 1> which proves the lemma.

Since units were shifted from row j to row i in the perturbation phase, it is

the case that ai was no larger than ai before the phase began. Other perturbations

in which rows i and j might have ·participated only increased the row sum of i and

decreased the row sum of j. Now, since less than s(j,i) units have been slid from

row i back to row j, it follows that row i has more 1's than row j in M 1. By the

pigeonhole principle there is some column, k, such that M 1(i,k]=l and M 1U,k]=O.

[]

The implication of the proof above is that we do not need to be very careful in

the way we slide units. The main problem we need to solve is that conflicts may

arise when we slide many units in parallel. This could happen since a donor might

have shifted units to many receivers, and a receiver might have received from

many donors. Our goal is to break down the problem into a set of independent

problems, which can all be solved in parallel. The first step is to get a formal

description of the donor-receiver relation.

Definition: The donation graph G = (D ,R ,E) is a bipartite graph with a vertex,

diED, representing each donor and a vertex r, E R representing each receiver, such

- 10-

that the edge {dj,rJ is in E if and only if s(j ,i) >0.

The following lemma plays a key role in simplifying the situation:

Lemma 2.2: The donation graph, G, is a forest.

Proof: Call a neighbor of a vertex, v, nontrivial if it has at least one other neigh

bor besides u. It follows from the way the perturbations were performed that each

vertex, u, has at most two nontrivial neighbors, one that became inactive before u,

and one that became inactive after u. Furthermore, all the vertices can be ordered

according to when they became inactive. Therefore G cannot contain any cycles.

[]

One can see that a matching in the donation graph, G, corresponds to an

independent set of sliding problems. However, there is no guarantee that the edges

of G can be partitioned into a small set of matchings, since G might have vertices

of high degree. Thus a more subtle partition is required.

Definition: A constellation is a subgraph of a given graph all of whose connected

components are stars (where a star is a tree with at most one non-leaf vertex).

Lemma 2.3: The edges of a forest can be partitioned into two (edge-disjoint) con

stellations.

Proof: It suffices to show that the edges of a tree can be partitioned into two con

stellations. Let T = (V ,E) be a tree, and take it to be rooted at some vertex, P.

The level of a vertex is its distance from P. v is the parent of u if {u ,v} E E and u is

closer to P than u. The partition of T into two constellations,

C 1 =(V,E 1), C2=(V ,E 2), is as follows:

E 1 = { {u,v} I u is the parent of v, the level of u is even }

E 2 = { {u,u} I u is the parent of v, the level of u is odd}

An example of such a partition is shown in fig. 2.3. []

- 11 -

Fig 2.3 : Partitioning a tree into two constellations

Our solution is based on the observation that a constellation corresponds to a set of

independent sliding problems which we can solve in parallel. Therefore our

approach will be to partition the donation graph into two constellations and then

to slide units in two stages - first corresponding to one constellation and then to

the other.

A star in the donation graph corresponds to several donors with a common

receiver or several receivers with a common donor. These two cases are symmetric,

so we will discuss only the first one. In what follows we describe a parallel algo

rithm that slides all the units corresponding to a star with receiver R and donors

D 1, ... ,Dd. Let M be a realization matrix of the perturbed instance we are about

to correct. Let r , d 1, ... ,dd denote the number of 1's in rows R , D 1, ... ,Dd

respectively and let si = s(Di,R). We need to slide si units from R to Di, for all

1 sis d in parallel. Our approach is to solve a matching problem in the following

bipartite graph, B =(X, Y ,E):

X = { Xj I M[R j] = 1}

Y = {Yilt I 1 sis d , 1 s k s si }

E = { {xj,Ji.k} I M[Dij] = 0}

Lemma 2.4: Every matching of B which covers all the vertices in Y corresponds to

sliding si units from R to Di, for all lSi Sd simultaneously.

Proof: By construction, there are ± si vertices in Y, one corresponding to each
I: 1

unit that was shifted from some Di to R. There is an edge between x1 and Yi,k if

and only if a unit can be slid from row R to row D1 in column k. The claim is,

- 12 -

therefore, evident. 0

At first sight it seems that we need to solve a maximum bipartite matching

problem, but closer observation reveals the following:

Lemma 2.5: Every maximal matching in B is maximum.

Proof: It suffices to show that any matching which does not cover all the vertices

in Y can be extended. The degree of Yi.k in B is, by definition, at least r -di.

Before the perturbation phase the row sum of R was no less than that of row Di.

After the perturbations, the row sum of R increased by at least fsi, and the row
i=l

sum of Di decreased by at least 1. Therefore:

For all i, k degree(Yi,Jr.) ~ r-di ~ fsi + 1 = IYI + 1
i=l

Since any matching contains no more than I Yl edges it follows that no partial

matching is maximal. 0

A maximal matching can be constructed efficiently in parallel ([IS],[Lu]). Our

parallel algorithm is, therefore, the following: construct the donation graph, and

partition it into two edge-disjoint constellations, C 1 and C 2 . For each component of

C 1, construct the bipartite graph, B, as described, and find a maximal matching, F,

in it. For all edges of B do in parallel: if {x;.Yi.J EF then slide a unit from R to Di

in column j. Finally, repeat this procedure on C2 (with the updated matrix).

It follows from lemmas 2.4 and 2.5 that after performing these operations all

the perturbations (of the current phase) are corrected.

2.4. The Base Case

The base case for our algorithm is when the number of different values of row

and column sums is bounded by a constant (5). The problem is then characterized

by the different values: a 1, · · · ,a 5 and b1, · · · ,b 5 and their multiplicities

n 1, · · · ,n 5 and mb · · · ,m 5 respectively. Let M be the realization matrix we con

struct, and let MiJ be the submatrix of M induced on the rows with sum ai and

columns with sum b;. We construct M in two steps:

Step 1: For each ij,l~ij~5, determine the number, FiJ• of units in Mij·

Step 2: For each i J., 1 ~ i j s 5, distribute the FiJ units between the different rows

and columns of MiJ·

We carry out step 1 by constructing a flow network of constant size, and

finding a max flow in it. The network has twelve vertices: a sources, a sink t, five

"row" vertices ul> · · · ,u 5 , and five "column" vertices v1, · · · ,v 5. The arcs are of

three kinds: arcs from s to each u1 with capacities ni'ai, from each v; to t with

. 13 -

capacities mrbj, and from each ui to each vj with capacities n(mj. This network is

simply the result of taking the original network flow formulation for this problem,

and compressing all "row" vertices with equal capacity into one vertex, and simi

larly for "column" vertices. Since this network is of constant size, a max flow can

be constructed in constant time using standard sequential methods.

In step 2 we convert the solution for the compressed network to a solution for

the original network by distributing the flow along each compressed arc evenly

between the arcs it defines. We do this by providing a solution for the following

problem: construct MiJ so that xiJ selected rows have each riJ units, YiJ columns

have each ciJ units and each of the remaining rows and columns have riJ -1 and

ciJ -1 units respectively. First, it is not hard to see that:

F·
riJ =r ~J 1 Xj.j =FiJ mod ni

I

F·
ci,j =r ~J 1

J
Y. ·=F ·mod m·

IJ IJ J

Assume we want each of the first xiJ rows and first YiJ columns to have riJ and ciJ

units respectively. Our solution is to put the units of the first row in the first riJ

columns, the units of the second row in the cyclically next set of columns etc. An

example is shown in fig. 2.4.

+ + + + + +
1 1 1

1 1 1

1 1 1

1 1

1 1

Fig. 2.4: Structure of Mi,j with 5 rows, i columns and 13 units.

Selected rows and columns are marked with arrows.

A construction for arbitrary sets of selected rows and columns \not necessarily the

first ones) is obtained from the one described above by simply permuting the rows

and columns appropriately.

Now we are ready to construct a realization, M, for the base case. The values

FiJ determine the xiJ. and YiJ values. All we need to ensure is that any two r~ws

- 14 -

(columns) with equal row (column) sums get selected the same number of times.

This can be done by selecting the first xi,l rows in Mi,l• the cyclically next set of

xi,2 rows in Mi,2 and so on, and similarly for columns .

Since ...e., F · = n··a L !J I I

j=l

the total number of rows selected in

{Mi,V ... ,Mi.5} is an integer multiple of ni, and it follows that any two rows

with equal row sums are selected the same number of times. A similar argument

holds for columns. Thus the construction described yields a correct solution for the

base case.

2.5. The Algorithm

In this section we state the algorithm more formally. A few words about nota

tion: I.P is shorthand for "in parallel". comments are between double parentheses;

l :k denotes a range of indices (in a matrix or a sequence); II denotes concatenation

of sequences; #A is the cardinality of the set A.

procedure MATR/X_CONSTRUCTION(a,b)

((This is the recursive procedure for constructing a matrix, M, with given row

- - 1 sums, a, and column sums, b. The row and co umn sums are assumed to be given

in a non-decreasing order.))

(1) Let n = length of a; m = length of b.
-+

(2) Compute Vr; and Vii- the number of different values in a and b resp.

(3) If Ya-s5 and Vils·s then return BASE_CASE(a,b).

(4) (a,{1,S ,SL,pert,zerop) = PERTURBATION(a,bi.

(5) If not zerop then M' = MATR/X_CONSTRUCTIONCa,{1).

(6) Else let x ,y be such that SL[x ,y] = 0 and either a% is in the middle third of

the a values or by is in the middle third of the b values. Do the following I.P:

(6.1) I.P set M'[iJ]=1 for all1SiSx, 1SjSy.

(6.2) I.P set M'[iJ]=O for all x <i Sn , y <j sm.

(6.3)

M'[x+1:n, l:y] = MATRIX_CONSTRUCTIONr a(x+l:n], ,8(1:y]-x)

(6.4)

M'[l:x, y+l:m] = MATRIX_CONSTRUCTION(a[1:x]-y,]l[y+l:m])

- 15-

(7) M = CORRECTION(M' ,S ,pert).

(8) Return M.

end MATRIX_CONSTRUCTION

procedure PERTURBATIONCa,b)

((This procedure computes one perturbation phase. The inputs are row sums, a,

and column sums, b. The outputs are new row and column sums, a and ft resp, the

slack matrix SL, the matrix of numbers of units shifted S, a variable pert indicat

ing whether row sums or column sums have been perturbed and a variable zerop

indicating if zero slack is obtained.))

(1) Let n = length of a; m =·length of b.

(2) Compute V-a and V r- the number of different values in a and b resp.

If Va.2: Vr then set pert= "rows". Else set pert= "columns" and perform the

rest of this routine with b, V r; and m instead of a, Vc; and n resp.

(3) Find h and l for which ah :;t:ah_ 1 , a1:;z:a1+ 1 , and the number of different

V- y_

values in <a 1, ... ,a~t- 1 > and <ah, ... ,a1> are t-fJ and r
3
a1 resp. Let

H =ah_ 1 and L =a1+ 1·

(4) Compute q and I = ±(ai-L) mod (H -L).
i=h

(5) Compute SL[iJ] ((the slack matrix)) for all 1 sis n , 1 Sj s m I.P.

(6) Compute mi =min {SL[iJll1sjsm} for all hSiSli.P.

(7) Compute - ~ (H -a} for all h Si <h +q I.P.
j=h

(8) Compute ± (a1-L) for all h+qSi<l I.P.
j=t+1

(9)Ifmi'>OforallhSi<l then set T = ± (ai-L)+ max{O,ah+q-1}.

i=h+q+l

Else set T = min {mi I mi' s 0}, and set zerop to true.

(10) Initialize S[i J] = 0 for all 1 s i J s n.

(11) Ui',S) = SHIFT_UNITS\<ah, ... ,a1>,T,H,L!.

- 16 -

(12) Set a = <a1, ... ,ah -1 > II a' II <a/+1• ... ,an>.

(13) Set SL[ij] = SL[ij]- ~ max{O,ak -ak} for all h Si sl , 1 Sj s m I.P.

(16) Return (a,b,S ,SL,pert).

end PERTURBATION

k =h

procedure SHIFT _UNITS(a,T,H,L)

((Shifts a total of T units between active rows with row sums a. H is the upper

bound on new rows sums and L is the lower bound. Returns the new row sums and

the matrix, S, of the numbers of units shifted between pairs of rows.))

(1) Denote the elements of a by ah, ... ,a1

(2) Compute for all 1 sis T I.P:

di = max { j I is ±cak -L)} ((donor of unit i))
k =j

ri = min { j I is ~ (H -ak)} ((receiver of unit i))
k=h

(3) Compute S[iJ] = #{ k I d 11 =i, rk=j} for all hSj<iSl I.P.

(5) Return Ca,S).

end SHIFT _UNITS

procedure CORRECTION(M,S,pert)

((This procedure computes one correction phase. The inputs are a realization

matrix, M, a matrix, S, containing amounts of units to be slid and a variable, pert,

indicating if units need to be slid between rows or columns. The output is the

matrix, M, after it has been corrected.))

(1) Let n = length of S.

(2) Construct the donation graph, G, where:

V(G) = {1, n} £(G) = { {ij} I S[ij]>O}

(3) For every connected component, T, of G do I.P:

- 17 -

(3.1) Partition T into two constellations, C 1 and C2.

(3.2) Perform SLIDE_UNITS(C ,M ,S ,pert) for every connected com

ponent, C, of C 1 I.P.

(3.3) Perform SLIDE_UNITS(C ,M ,S ,pert) for every connected com

ponent, C, of C 2 I.P.

(3.4) Return M

end CORRECTION

procedure SLIDE_UNITS(C ,M ,S ,pert)

((Units are slid in the matrix M, between one donor and many receivers or one

receiver and many donors. The vertices of the star, C, are the participating

rows/columns of M. The matrix, S, contains the numbers of units to be slid and

the variable pert indicates if units need to be slid between rows or columns.))

(1) Let c be the unique non-leaf of C ((If C has exactly two vertices let c be

any one of them)). Let lv ... ,ld be the remaining vertices of C.

(2) If pert ="rows" then let Mc,M 11 , ••• ,Mza be rows c,l 1, ... ,ld of M.

Else let Mc,Mz
1

, ••• ,Mzrt be columns c,l 1, .•• ,ld of M.

(3) If S[c ,l t1 >0 ((i.e. c is a donor and li are receivers)) then complement

Mc,Mz
1
, ••• ,M1rt I.P, and set comp to true.

Let si = max{S[li,c],S[c,li]} ((the number of units to be slid from Me to Mz))
I

for 1 si sd.

(4) Construct the bipartite graph, B =(X, Y ,E):

y = { Yi .k I 1 :S i s d , 1 :S k :S s i }

(5) Compute F, a maximal matching in B.

(6) For all {xj,Yi,JEF do in parallel: set Mc[j]=O and Mli[j]=l.

(7) If comp then complement MnMI: Mid I.P.

(8) Copy Mc,Ml
1

, •••)vf1rt back into their original location in M ((see step (2)

)) .

- 18-

end SLIDE_UNITS

----procedure BASE_CASE(a,b)

((Constructs a matrix, M, with row sums a and column sums b, where the number

of different values of elements in a and b is at most five.))

(1) Let a 1 > · · · > ak and b 1 > · · · > b1 be the values of the elements of a ·
and b resp., and let n 1, ... ,nk and m 1, ... ,m1 be their respective multi

plicities.

(2) Construct a flow network, N, with vertices s, t, u 1, ..• , uk, v1, ... , Vt

and the following arcs (for all 1 sis k , 1 Sj s l):

from s to ui with capacity ni"ai

from v1 to t with capacity mj'bJ

from ui to v1 with capacity n(mJ

(3) Find a max s- t flow in N. For all ij let FiJ be the flow on the arc (ui,v1).

(4) For all ij construct MiJ as shown in figure 2.4. There are FiJ mod ni

selected rows, starting at row (f Fi,h + 1) mod ni (cyclically) and
h=1

FiJ mod m1 selected columns, starting at column <
1f Fi,h + 1) mod ni.
h=1

(5) Let M be the appropriate concatenation of the M,/s.

(6) Return M.

end BASE_CASE

2.6. Parallel Complexity

The time and processor bounds of our algorithm depend on how we chose to

implement the maximal matching routine. Two competing implementations are

given in [IS] and [Lu]. On a graph with e edges, Israeli and Shiloach's algorithm

takes time 0 (log3e) and uses 0 (e) processors on a CRCW PRAM. Luby's algorithm

requires only 0(log2e) time on an EREW PRAM, but uses 0(e 2) processors. It is

straightforward, though somewhat tedious, to verify that all the other operations

in one phase of MATRIX_CONSTR UCTION can be performed with the resources

required for maximal matching (in both the implementations listed above).

- 19-

There are O(logjM!) phases (as proven in section 2.2). In a correction phase

for rows there are O(n) parallel calls to maximal matching on bipartite graphs

with O(m 2) edges each. When columns are corrected, there are O(m) calls, each of

size O(n 2). Thus the number of processors required is

O(nm(n+m)) = O(jMj·(n+m)) using [IS], and 0(nm(n+m) 3) = O(jMj·(n+m)3)

using [Lu]. When n =9(m) the processor requirements are O(jMjl.5) and O(jMj 2·
5)

respectively.

3. The Symmetric Supply-Demand Problem

In this section we will show how the methodology developed in section 2 gives

rise to a parallel algorithm to the symmetric problem. Here the input is a

sequence of integers, f 1 "2! f 2 "2! · · • "2! fn, summing to zero. The goal is to construct

a flow pattern in which every vertex can send up to one unit of flow to any other

vertex such that the flow out of ui minus the flow into it is fi (for all 1 sis n). The

goal can be viewed as constructing an n Xn zero-one matrix, M (where M[iJ] is

the amount of flow sent from vertex i to vertex j) such that, for all i, the the

number of ones in row i minus the number of ones in column i is h Note that

changing the values along the main diagonal does not change the instance M

describes, so they can all be set to zero at the end of the computation.

Again we start with a network-flow formulation for the problem. The flow

network has n + 2 vertices: s, t, u1, •.• , un. If fi >0 then there is an arc from s to

ui with capacity h and if fi < 0 then there is an arc from ui to t with capacity h

Also, there is an arc with capacity 1 from ui to u; for all 1 s i J s n. Examination of

this network shows that there are only n potential min cuts: of all cuts containing

x vertices with s, the one containing u1, ... ,ux is of smallest capacity. Thus, for

this problem we have a slack uector. An analysis similar to the one in section 2

shows that, for all 1 s x s n:

slfx) = x·(n -x) - ~{;
i==l

It is interesting to note that here, as opposed to the matrix construction problem,

the object describing the slacks (a vector of length n) has a different size (and

dimension) than the object being constructed (an n X n matrix).

A perturbation phase is performed in the same way as in section 2, except

that there is only one sequence being perturbed (as opposed to separate row and

column sequences). Again we have the property (similar to proposition 2.3) that

shifting a unit from j to i (i <j) decreases the slacks at entries i, i + 1, ... ,j -1,

and does not change the other entries.

- 20 -

A correction phase is, however, trickier than before. The reason is that if a

unit is to be returned from entry i to entry j, it can be done either by sliding a

unit from row i to row j or by sliding a unit from column j to column i. The

equivalent of lemma 2.1 holds here, but for each unit only one of the two ways of

sliding listed above is guaranteed to exist. Furthermore, if we simultaneously try

to slide units in rows and in columns, conflicts may arise.

Our solution is to perform the correction in two stages: first slide between

rows, then slide between columns. The first stage is identical to a row-correction

phase of section 2. The only difference is that the maximal matching computed

does not necessarily cover all the vertices of one side of the bipartite graph, B.

After the first stage, we update the donation matrix (the s(iJ)'s), according to the

numbers of units slid in the first stage. We then perform a column-correction

phase for the resulting problem.

Lemma 3.1: Every maximal matching computed in the second stage is maximum.

Proof: As in section 2.3, let R, D lt ... , Dd be the vertices of a star in the dona

tion graph. Let B 1 =(X bY bE 1) be the bipartite graph for sliding between the rows

corresponding to these vertices in the first stage. Let B 2 =(X 2, Y 2,E 2) be the bipar

tite graph for sliding between the columns corresponding to these vertices in the

second stage. Then, as in the proof of lemma 2.5, for each vertex in Y 2, the sum of

its degrees in B 1 and B 2 is at least I Y tl + 1. It follows that the degree of every

such vertex in B 2 is at least I Y 21 + 1. 0

Corollary 3.1: Every unit that is perturbed gets slid in one of the two stages.

The base case is solved along the same lines described in section 2.4, but a few

more details need to be handled. The base case is when there are at most five

different values, {1 > · · · >{5, with respective multiplicities n 1, ... ,n 5. Again

we start by finding a max flow in a constant size network (having 7 vertices -

s, t, v1, ... , v5) to determine the number of units, Fi.J• in Mi.J· Now, as opposed to

the previous case, ~FiJ needn't be an integer multiple of ni. Therefore, after

j=1

distributing unit evenly between all rows with the same f value (as described in

section 2.4), some of these rows will have p units and some will have p -1 units

(for some appropriate p). Similarly, not all the columns with the same f value will

necessarily have the same number of units. We overcome this obstacle by observ

ing that if i and j have the same f value, and if row sum i is greater by one than

row sum j then column sum i should be greater by one than column sum j. There

fore, the problem is solved by (using terminology of section 2.4) selecting rows and

columns in the same order.

Finally we note that the algorithm for the symmetric problem uses the same

resources (time and number of processors) as the matrix construction algorithm

(see section 2.6).

- 21 -

4. Digraph Construction

In this section we describe our solution for the problem of constructing· a sim

ple digraph with specified in-degree and out-degree sequences. By "simple" we

mean no self loops and no parallel arcs. Notice that if self loops are allowed, this

problem is exactly the matrix construction problem described in section 2. The

digraph construction problem can be stated as follows: given two equal-length

sequences, (o 1, ... ,on) and (i 1, ... ,in) , (that are not necessarily sorted!), con

struct an n X n zero-one matrix, M, that has ok 1's in row k and ik l's in column k

(for all 1 s k s n), so that all the elements on the main diagonal of M are zero.

Our solution is based on the algorithm described in section 2. We start,

again, by looking at the network flow formulation for this problem. The network is

almost identical to the one in figure 1, except that each vertex on the left is miss

ing one outgoing arc, and each vertex on the right is missing one incoming arc. It

is convenient to view the missing arcs as existing arcs with capacity zero. We will

call these blocked arcs and the corresponding entries in the realization matrix

blocked entries. Our first goal is to show that in this case too there are only n 2

potential minimum cuts. Let a 1 <=: • • • <=:an and b1 <=: • • · <=: bn be the sorted

sequences of out-degrees and in-degrees respectively (i.e. a is obtained by sorting

o and b by sorting I), and let N be the network corresponding to a and b (similar

to the one shown in figure 1). The capacity of the cut C:r.,y (as shown in figure 2) is,

in this case:

capacity(C:r.) = ~ a, + ~ bj + x·y -B(x,y)
i=:r.+l j=y+l

where B(x,y) is the number of blocked arcs crossing the cut. Since there is at most

one blocked entry in every row and every column, a simple argument shows that if

a:r.>a:r.+l and by>by+ 1 then this cut has the smallest capacity among all cuts for

which the s side contains x vertices on the left and n-y vertices on the right.

However, if, say, a:r. =a:r. + 1 then a the cut obtained by switching vertices u:r. and

u:r. + 1 might have smaller capacity, since the number of blocked arcs crossing it

could be greater by one. Therefore, if we want the cuts C:r.,y to be the only poten

tial minimum cuts, we need to be careful about the ordering of "row" vertices

corresponding to rows with equal row sums, and similarly for columns. The condi

tions we need to enforce on the order are, simply: if a:r. = a:r. + 1> then the blocked

entry in row x should be in a lower-indexed column than the blocked entry in row

x + 1. The symmetrical conditions should hold for columns.

These conditions can be obtained by two rounds of sorting: first sort rows

according to row sums. Sort rows with equal sums according to the corresponding

column sums (i.e. the correspondence given by the o and f sequences), breaking

ties arbitrarily. Now, sort the columns according to column sums. Columns with

equal sums are sorted according to the order of the corresponding rows that was

- 22 -

obtained in the first round. No ties can arise, since there is, at this point, a total

ordering of the rows.

After this preproce-ssing is done, we are ready to proceed along the same lines

as the algorithm described in section 2, with a few modifications. The slack func

tion is now:

sla,f/x,y) = ~ ai - ~bj + x·y - B(x,y)
i=x+l j=l

By the discussion above, it is again true that an instance is realizable if and only if

its slack matrix is non-negative. If sla.f/x,y)=O then M[iJ]=l for all

lsisx, lsjsy except for blocked entries, and M[iJ]=O for all x+1Si:5n

,y+lSjSn.

The perturbation phases work identically here, since they only deal with the

row and column sums, and not with the internal structure of the realization

matrix.

In the correction phases there is a small modification - units should not be slid

into blocked entries. This is fixed by modifying the bipartite graph, B, in the obvi

ous way. Also, we need to re-examine the proof of lemma 2.5. It works out exactly

right in this case, since it turns out that:

for all i,k degree(Ji,k) ~ I Yl

which is precisely sufficient (see the original proof).

The only tricky modification turns out to be for the base case. Again, there

are at most five different row sum values and five different column sum values.

The difficulty is that there are blocked entries scattered throughout. This spoils the

simple cyclic realization that existed. We overcome this by partitioning the matrix

into finer sub-matrices than in the previous case. Each of the Mi,/s is partitioned

further so that each sub-matrix either contains no blocked entries, or contains a

blocked entry in every row and column.

Again we construct a realization in two steps. The first step is to determine

the total number of units in each sub-matrix. This is done, here too, by solving a

max flow problem (where the capacity of a sub-matrix is the number of non

blocked entries in it). Again, the network here is of constant size, so a max flow

can be computed in constant time. In the second step, the units are distributed

within the sub-matrices. The key here is to deal first with the sub-matrices con

taining blocked entries. It is not always possible to select arbitrary sets of rows

and columns, but it is possible to distribute the units so that the discrepancy

between any two rows or any two columns will be at most one unit. This can be

done as follows: say the blocked entries are along the main diagonal (this will

actually always be the case because of the preprocessing), and let k be the number

- 23 -

of rows (and columns) of the sub-matrix. Let dr (the r'th diagonal) be the set of

entries, (ij), for which j -i = r (mod k). If F units are to be distributed, fill

d 1, ... ,d F , and place the remaining units in d F An example is shown in
lkl lkl+l

figure 4.1.

Figure 4.1: A 5 X 5 sub-matrix with blocked entries containing 11 units.

Now, after the "problematic" sub-matrices have been dealt with, we can construct

the sub-matrices with no blocked entries in the same fashion as described in sec

tion 2.4. The same arguments for proving validity of the scheme go through,

because there is at most one blocked entry in every row or column.

5. Bounds on Supplies and Demands

Our parallel algorithm for the matrix construction problem can be extended to

the case in which the sequences a and b represent upper bounds on row sums and

lower bounds on column sums respectively. This is a natural extension of the

matrix construction problem when rows represent supplies and columns represent

demands.

Let U = ~ai and L = ~bi. Let M be a realization matrix for the

i=l i=l

instance (a,b>, and letS be the number of l's in M. Then, clearly, L ~s ~u. Say

we fix S. Then the problem boils down to the following: modify the sequences a
and b to obtain a and l1 respectively so that:

(1) ai~ai and bj~fJJ for all l~i~n, l~j~m.

(2) 2:ai = 2:PJ = s.
i=l j=l

(3) Cii,/1) is realizable.

It is, of course, not always possible to satisfy all three conditions simultane

ously. Thus our goal is find such a pair of sequences if it exists.

- 24-

The key for obtaining the sequences a and fi is to consider the slack matrix,

as defined in section 2.1. Recall that the condition for realizability is that all the

slacks are non-negative, and that:

Lemma 5.1: Let a 1 ~ · · · ~an and b 1 ~ • • • ~ bm. Let a(k) <#([)) be the

sequence obtained from a (b) by subtracting 1 from a~e (adding 1 to b1). Then

(a(1),P(m)) is realizable if(a(k),p(l)) is (for any 1Sksn, 1SlSm).

Proof:

slam,/I<ml(x,y) - sl7i<kJ,"P(l)(x,y) = ~ (a(l)i- a(k\) + }:. ({J(l)1- {J(m))

i=x+l j=l

It is easy to see that for all values of x ,y ,k and l this difference is non-negative,

which proves the lemma. 0

Theorem 5.1: Let a<Sl be obtained from a by repeatedly subtracting 1 from the

largest element U-S times and let fi<sJ be obtained from bby repeatedly adding 1

to the smallest element S - L times. Then (a15 l•P<sJ) is realizable if there is any

realizable pair of sequences (y,71) where 'Yisai, ~1 ~b1 (for all 1SiSn, lSjSm)

and ~ y i = :2: ~ J = S .
i=l j=l

Proof: By induction on U-S using lemma 5.1 0

(a<SJ•P<sJ) can be obtained from (a,b> efficiently in parallel by a simple

partial-sums computation. The algorithm is:

(1) For all S, lsSsU, do I.P:

(1.1) Compute a(S) and 71(S)·

(1.2) Test if (a<sJ.7J<sJ) is realizable ((using the method described in [FF])).

(2) Select an S for which (a<SJ•P<sl) is realizable.

(3) Compute M = MATRIX_CONSTR UCTION(a<sl,7J<sl).

Steps (1.1) and (1.2) are simple partial-sum computations, and can be imple

mented using O(n + m) processors. Since steps (1) and (2) can be implemented

within the time and processor bounds used for step 13), the algorithm has the same

parallel complexity as the matrix construction algorithm. Note that we may per

form step (2) with some criterion in mind (e.g. "construct a matrix with the smal

lest possible number of l's subject to ... ").

- 25 -

The extension of the symmetric supply-demand problem turns out to be even

simpler. Here the natural extension would be that all the f values represent upper

bounds, since making a number "less positive" corresponds to less supply, and

making a number "more negative" corresponds to more demand. So in an instance

of this problems, the positive number would sum up to + H and the negative

number would sum up to - L, for some H > L.

Here, as opposed to the matrix construction problem, it is clear which value of

S works best (where S is the sum of the positive entries, and minus the sum of the

negative entries). By looking at the expressions for the slack vector, one can see

that decreasing S cannot ruin feasibility. Therefore S should be selected to be as

small as possible, i.e. S = L.

To summerize, only the positive f entries should be modified. Again, as in the

matrix construction problem, the best way to modify these numbers is to repeat

edly subtract one unit from the largest entry until H- L units have been sub

tracted.

Acknowledgments

We thank Richard Karp for suggesting the matrix construction and symmetric

supply-demand problems and for interesting discussions.

References

[B] Berge, C. , "Graphs"

North Holland, 1985.

[F] Fich, F. , "New bounds for Parallel Prefix Circuits"

15'th STOC, pp. 100-109, 1983.

[FF] Ford, L.R. and Fulkerson, D.R. , "Flows in Networks"

Princeton University Press, 1962.

[G) Gale, D. "A Theorem on Flows in Networks"

Pacific J. Math. 7 , pp. 1073-1082, 1957.

[GSS]Goldschlager, L.M. , Shaw, R.A. and Staples, J. "The Maximum Flow Prob

lem is Logspace Complete for P"

Theoretical Computer Science 21, pp. 105-111, 1982.

[GT] Goldberg, A. and Tarjan, R.E. , "A New Approach to the Maximum Flow Prob

lem"

18'th STOC, pp. 136-146, 1986.

- 26 -

[IS] Israeli, A. and Shiloach, Y. , "An Improved Parallel Algorithm for Maximal

Matching in a Graph"

Manuscript, 1984.

[KUW1]

Karp, R.M. , Upfal, E. and Wigderson, A. "Are Search and Decision Problems

Computationally Equivalent?"

17'th STOC, pp. 464-4 75, 1985.

[KUW2]

Karp, R.M. , Upfal, E. and Wigderson, A. "Constructing a Perfect Matching is

in Random NC"

Combinatorica 6 (1) , pp. 35-48, 1986.

[La] Lawler, E.L. , "Combinatorial Optimization, Networks and Matroids"

Holt, Reinhart and Winston, 1976.

[Lu] Luby, M. "A Simple Parallel Algorithm for the Maximal Independent Set

Problem"

17'th STOC, pp. 1-10, 1985.

[MR]Miller, G.L. and Reif, J.H., "Parallel Tree Contraction and its Application"

26'th FOCS, pp. 4 78-489, 1985.

[MVV]

Mulmuley, K. , Vazirani, U.V. and Vazirani, V.V. , "Matching is as Easy as

Matrix In version"

19'th STOC, 1987.

[PS] Papadimitriou, C.H. and Steiglitz, K. , "Combinatorial Optimization: Algo

rithms and Complexity"

Prentice-Hall , 1982.

[R] Ryser, H.J. , "Traces of Matrices of Zeros and Ones"

Canad. J. Math. 9 , pp. 463-4 76 , 1960.

[SV] Shiloach, Y. and Vishkin, U., "An 0(log n) Parallel Connectivity Algorithm"

J. of Algorithms 3, pp. 57-67, 1982.

[TV] Tarjan, R.E. and Vishkin, U., "An Efficient Parallel Biconnectivity Algo

rithm"

Siam J. on Computing, 14, pp. 862-874, 1985.

